
Supplementary material for “Widespread redundancy in -omics
pro les of cancer mutation states”

A version of the main paper gures using the area under the receiver-operator curve (AUROC) metric
rather than AUPR is available at https://doi.org/10.6084/m9.figshare.14919729 .

In a previous version of this paper, we ran our analysis only for the genes in the Vogelstein et al. 2013
gene set. While there were some gene-to-gene di erences in this set, we did not observe large
di erences between methylation and gene expression performances overall. Scaling up the gene set
by combining cancer gene sets from the literature as described in the methods/results sections
a ected the study results somewhat, as mutations in the added genes tend to be better predicted
using gene expression than other data types. During the revision, we explored the di erence between
the genes in this gene set and the genes in the “merged” cancer-related gene set but not in the
Vogelstein genes. GO analysis results for the Vogelstein genes are available at https://doi.org/

10.6084/m9.figshare.19565890 , and results for the non-Vogelstein genes are available at http

s://doi.org/10.6084/m9.figshare.19565887 . We noticed that the non-Vogelstein genes tend

to be enriched for terms relating to transcription factors and transcriptional regulation.

As a data resource, coe cients and hyperparameter choices for nal models t using all data types
are available on Figshare: coe cients are available at https://doi.org/10.6084/m9.figshare.

19576012  and hyperparameters are at https://doi.org/10.6084/m9.figshare.19576048 .

Columns in the coe cients dataset correspond to target genes (gene symbols), and rows correspond
either to PCA components (for 27K and 450K methylation), -omics features (for all other data types), or
covariates (cancer type indicator variables or log(mutation burden)). An ‘NA’ value in a cell indicates
that feature was not used in the model for the corresponding gene (for an -omics feature this could
mean it was not in the top 8000 features by MAD, for a cancer type feature this means that cancer
type was not included in the training set based on our mutation lters). A 0 value in a cell indicates
that feature was included in model training, but it was not selected by the elastic net feature selection
algorithm. Columns in the hyperparameters dataset correspond to hyperparameters (alpha and
l1_ratio for elastic net logistic regression) and rows correspond to target genes. For the methylation
data types, PCA results (score and loading matrices) corresponding to the coe cients data are also
available at https://doi.org/10.6084/m9.figshare.19908034 . These contain the top 5,000

principal components for each data type, which were used in the classi ers evaluated in the main
paper.

Regarding the hyperparameters for the nal models, recall that for the main gures in the paper, we
evaluate each of our models using 2 replicates of 4-fold cross-validation. For each of these folds (train/
test splits), we further split the training set into train and validation sets to select hyperparameters,
independently for each fold, and evaluate the models on the test set to get the results in the paper.
Because we are evaluating performance over multiple folds, it is not perfectly straightforward to get a
single set of regression coe cients, since we have a (potentially di erent) set of coe cients for each
cross-validation fold. In order to synthesize these results into a single model for each gene in each
data type, we selected one of the 8 sets of hyperparameters (from the 8 best models, 1 per CV fold) at
random, with probability proportional to performance (AUPR) on the validation set used to select the
hyperparameters, described above (so test set performance is not used here). We then used the
selected hyperparameters to train a single model on the entire dataset.
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Figure S1:  Proportion of samples from each TCGA cancer type that are “dropped” as more data types are added to our
analyses. We started with gene expression data, and for each added data type, we took the intersection of samples that
were pro led for that data type and the previous data types, dropping all samples that were missing 1 or more data
types. Overall, at each step, the proportions of “dropped” samples appear to be fairly evenly spread between cancer
types, showing that in general we are not disproportionately losing one or several cancer types as more data modalities
are added to our analyses.

Figure S2:  Heatmap displaying predictive performance for mutations in each of the 272 genes from the cancer-related
gene set, across gene expression and the two DNA methylation arrays. Each cell quanti es performance for a target
gene, using predictive features derived from a particular data type. Grey shaded dots indicate that the given data type
provides signi cantly better predictions than the permuted baseline for the given gene; black inner dots indicate the
same and additionally that the given data type provides statistically equivalent performance to the data type with the
best average performance (determined by pairwise t-tests across data types with FDR correction).



Figure S3:  Volcano-like plots showing predictive performance for each gene in the cancer-related gene set for
expression and DNA methylation, on the sample set used for the “all data types” experiments. The rst row shows
performance relative to the permuted baseline, and the second row shows direct comparisons between data types for
genes that outperformed the permuted baseline only for both data types. The x-axis shows the di erence in mean
AUPR compared with a baseline model trained on permuted labels, and the y-axis shows p-values for a paired t-test
comparing cross-validated AUPR values within folds.

Figure S4:  Volcano-like plots showing predictive performance for each gene in the cancer-related gene set for all data
types, relative to the permuted baseline model, when genes are ltered based on the entire dataset rather than by
cancer type. For this ltering approach, we included/excluded entire genes rather than individual cancer types:
speci cally, we trained a classi er for each gene where all cancer types combined had at least 5% mutated samples and
at least 100 total mutated samples, resulting in 182 total classi ers. The x-axis shows the di erence in mean AUPR
compared with a baseline model trained on permuted labels, and the y-axis shows p-values for a paired t-test
comparing cross-validated AUPR values within folds. Counts of genes making the signi cance threshold of 0.001: gene
expression 81/182 (44.5%), 27K methylation 16/182 (8.8%), 450K methylation 1/182 (0.6%), RPPA 41/182 (22.5%),
microRNA 25/182 (13.7%), mutational signatures 7/182 (3.9%).



Figure S5:  Predictive performance for genes in the cancer-related gene set, using each of the three data types as
predictors. The x-axis shows the number of PCA components used as features, “raw” = no PCA compression.



Figure S6:  Top plot: comparing the best-performing model (i.e. highest mean AUPR relative to permuted baseline)
trained on a single data type against the best “multi-omics” model for each target gene, using raw (not PCA compressed)
features. For feature parity between data types, the top 20,000 features by mean absolute deviation were used for each
data type. The di erence between single-omics and multi-omics performance for TP53 was statistically signi cant
(p=0.0078), but other di erences between single-omics and multi-omics models were not statistically signi cant using
paired-sample Wilcoxon tests across cross-validation folds, for a threshold of 0.05. Bottom plots: classi er performance,
relative to baseline with permuted labels, for individual genes. Each panel shows performance for one of the six target
genes; box plots show performance distribution over 8 evaluation sets (4 cross-validation folds x 2 replicates).



Figure S7:  Top plot: comparing the best-performing model (i.e. highest mean AUPR relative to permuted baseline)
trained on a single data type against the best “multi-omics” model for each target gene, using a 3-layer fully-connected
neural network. The top 5,000 principal components were used as predictive features for each data type. The di erence
between single-omics and multi-omics performance for PIK3CA (p = 0.0156, in favor of multi-omics) and TP53 (p =
0.0391, in favor of single-omics) were statistically signi cant, but other di erences between single-omics and multi-
omics models were not statistically signi cant using paired-sample Wilcoxon tests across cross-validation folds, for a
threshold of 0.05. Bottom plots: comparison of classi er performance between elastic net and fully-connected NN,
relative to baseline with permuted labels, for individual genes. Each panel shows performance for one of the six target
genes; box plots show performance distribution over 8 evaluation sets (4 cross-validation folds x 2 replicates).


